
IEEE New Hampshire Section
Radar Systems Course   1
Radar Cross Section  1/1/2010 IEEE AES Society

Radar Systems Engineering
 Lecture 7 –

 
Part 1

 Radar Cross Section

Dr. Robert M. O’Donnell
IEEE New Hampshire Section

Guest Lecturer 



Radar Systems Course    2
Radar Cross Section  1/1/2010

IEEE New Hampshire Section
IEEE AES Society

Block Diagram of Radar System

Transmitter

Waveform
Generation

Power
Amplifier

T / R
Switch

Antenna

Propagation
Medium

Target
Radar
Cross

Section

Photo Image
Courtesy of US Air Force
Used with permission.

Pulse
CompressionReceiver Clutter Rejection

(Doppler Filtering)
A / D

Converter

General Purpose Computer

Tracking

Data
Recording

Parameter
Estimation Detection

Signal Processor Computer

Thresholding

User Displays and Radar Control

This lecture



Radar Systems Course    3
Radar Cross Section  1/1/2010

IEEE New Hampshire Section
IEEE AES Society

Definition -
 

Radar Cross Section (RCS or σ)

Radar Cross Section

 

(RCS) is the hypothetical area, that would intercept the 
incident power at the target, which if scattered isotropically, would  produce 
the same echo power at the radar, as  the actual target.

Figure by MIT OCW.
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Factors Determining RCS

Figure by MIT OCW.
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Threat’s View of the Radar 
Range Equation
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Figure by MIT OCW.
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Outline

• Radar cross section (RCS) of typical targets
– Variation with frequency, type of target, etc.

• Physical scattering mechanisms and contributors to 
the RCS of a target

• Prediction of a target’s radar cross section
– Measurement
– Theoretical Calculation
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Radar Cross Section of Artillery Shell
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for

155mm Howitzer
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Radar Cross Section of Cessna 150L

S Band
V V

Polarization

Measured at RATSCAT (6585th

 

Test Group) Holloman AFB for FAA

Courtesy of Federal Aviation Administration
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Aspect Angle Dependence of RCS
Cone Sphere Re-entry Vehicle (RV) Example

Figure by MIT OCW.
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Examples of Radar Cross Sections 
Square meters

Conventional winged missile

 

0.1
Small, single engine aircraft, or jet fighter

 

1
Four passenger jet

 

2
Large fighter

 

6
Medium jet airliner

 

40
Jumbo jet

 

100
Helicopter

 

3

Small open boat

 

0.02
Small pleasure boat (20-30 ft)

 

2
Cabin cruiser (40-50 ft)

 

10
Ship (5,000 tons displacement, L Band)

 

10,000

Automobile / Small truck

 

100 -

 

200
Bicycle

 

2
Man

 

1
Birds (large -> medium)

 

10-2 - 10-3

Insects (locust -> fly)

 

10-4 - 10-5

Radar Cross Sections of Targets Span at least 50 dB
Adapted from Skolnik, Reference 2
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Outline

• Radar cross section (RCS) of typical targets
– Variation with frequency, type of target, etc.

• Physical scattering mechanisms and contributors to 
the RCS of a target

• Prediction of a target’s radar cross section
– Measurement
– Theoretical Calculation
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RCS Target Contributors

• Types of RCS Contributors
– Structural

 

(Body shape, Control surfaces, etc.)
– Avionics

 

(Altimeter, Seeker, GPS, etc.)
– Propulsion (Engine inlets and exhausts, etc.)

Inlet

Control Surfaces
Altimeter

Seeker
Body Shape

Exhaust
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Single and Multiple Frequency RCS 
Calculations with the FD-FD Technique

• RCS Calculations for a Single Frequency
– Illuminate target with incident sinusoidal wave
– Sequentially in time, update the electric and magnetic fields, until 

steady state conditions are met
– The scattered wave’s amplitude and phase can the be calculated

• RCS Calculations for a Multiple Frequencies
– Illuminate target with incident Gaussian pulse
– Calculate the transient response
– Calculate to Fourier transforms of both:

 Incident Gaussian pulse, and
 Transient response

– RCS at multiple frequencies is calculated from the ratios of these two 
quantities
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Scattering Mechanisms
 for an Arbitrary Target
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Measured RCS of C-29 Aircraft Model

Full Scale C-29 
BAE Hawker 125-800
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Outline

• Radar cross section (RCS) of typical targets
– Variation with frequency, type of target, etc.

• Physical scattering mechanisms and contributors to 
the RCS of a target

• Prediction of a target’s radar cross section
– Measurement
– Theoretical Calculation
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Techniques for RCS Analysis

Scaled Model Measurements
Theoretical Prediction

Full Scale Measurements

Courtesy of MIT Lincoln Laboratory
Used with Permission
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Full Scale Measurements

Target on Support

• Foam column mounting
– Dielectric properties of Styrofoam close to those of free space

• Metal pylon mounting
– Metal pylon shaped to reduce radar reflections
– Background subtraction can be used

Derived from: http://www.af.mil/shared/media/photodb/photos/050805-F-0000S-003.jpg

Courtesy of MIT Lincoln Laboratory
Used with Permission
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Full Scale Measurement of 
Johnson Generic Aircraft Model (JGAM)

RATSCAT Outdoor Measurement 
Facility at Holloman AFB Courtesy of MIT Lincoln Laboratory

Used with Permission
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Compact Range RCS Measurement
Radar Reflectivity Laboratory (Pt. Mugu) / AFRL Compact Range (WPAFB)

Courtesy of U. S. Navy.
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Scale Model Measurement

Subscale
Measure at frequency S x F

Scale Factor
S

(Reduced Size)

Full Scale
Measure at frequency f

MQM-107 Drone in 0.29, 0.034, and 0.01 scaled sizes

Courtesy of MIT Lincoln Laboratory
Used with Permission
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Scaling of RCS of Targets
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Outline

• Radar cross section (RCS) of typical targets
– Variation with frequency, type of target, etc.

• Physical scattering mechanisms and contributors to 
the RCS of a target

• Prediction of a target’s radar cross section
– Measurement
– Theoretical Calculation
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Radar Cross Section Calculation Methods

• Introduction
– A look at the few simple problems 

• RCS prediction
– Exact Techniques

 Finite Difference-

 

Time Domain Technique (FD-TD)
 Method of Moments (MOM)

– Approximate Techniques
 Geometrical Optics (GO) 
 Physical Optics (PO)
 Geometrical Theory of Diffraction (GTD) 
 Physical Theory of Diffraction (PTD)

• Comparison of different methodologies
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Radar Cross Section of Sphere
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Radar Cross Section Calculation Issues

• Three regions of wavelength 
 Rayleigh (λ

 

>> a)
 Mie / Resonance (λ

 

~ a)
 Optical

 

(λ

 

<< a)

• Other simple shapes
– Examples: Cylinders, Flat Plates, Rods, Cones, Ogives
– Some

 

amenable to relatively straightforward solutions in some

 
wavelength regions

• Complex targets:
– Examples: Aircraft, Missiles, Ships)
– RCS changes significantly with very small changes in frequency 

and / or viewing angle
 See Ref. 6 (Levanon), problem 2-1 or Ref. 2 (Skolnik) page 57

• We will spend the rest of the lecture studying the different 
basic methods of calculating radar cross sections 



Radar Systems Course    27
Radar Cross Section  1/1/2010

IEEE New Hampshire Section
IEEE AES Society

High Frequency RCS Approximations 
(Simple Scattering Features)

Scattering Feature

 

Orientation

 

Approximate RCS

Corner Reflector

 

Axis of symmetry along LOS

Flat Plate

 

Surface perpendicular to LOS

Singly Curved Surface

 

Surface perpendicular to LOS

Doubly Curved Surface

 

Surface perpendicular to LOS

Straight Edge

 

Edge perpendicular to LOS

Curved Edge

 

Edge element perpendicular to LOS

Cone Tip

 

Axial incidence

Where:

22
eff /A4 λπ

22 /A4 λπ

22 /A4 λπ

21 aaπ

πλ /2

2/a λ

)2/(sin42 αλ

Adapted from Knott is Skolnik Reference 3 
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Radar Cross Section Calculation Issues

• Three regions of wavelength 
 Rayleigh (λ

 

>> a)
 Mie / Resonance (λ

 

~ a)
 Optical

 

(λ

 

<< a)

• Other simple shapes
– Examples: Cylinders, Flat Plates, Rods, Cones, Ogives
– Some

 

amenable to relatively straightforward solutions in some

 
wavelength regions

• Complex targets:
– Examples: Aircraft, Missiles, Ships)
– RCS changes significantly with very small changes in frequency 

and / or viewing angle
 See Ref. 6 (Levanon), problem 2-1 or Ref. 2 (Skolnik) page 57

• We will spend the rest of the lecture studying the different 
basic methods of calculating radar cross sections 
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RCS Calculation -
 

Overview

• Electromagnetism Problem
– A plane wave with electric field,     , impinges on the target of 

interest and some of the energy scatters back to the radar 
antenna

– Since, the radar cross section is given by:

– All we need to do is use Maxwell’s Equations to calculate the 
scattered electric field

– That’s easier said that done

– Before we examine in detail these different techniques, let’s 
review briefly the necessary electromagnetism concepts and 
formulae, in the next few viewgraphs
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Maxwell’s Equations

• Source free region of space:

• Free space constitutive relations:
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Maxwell’s Equations in Time-Harmonic Form

• Source free region:

• Time dependence
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Boundary Conditions

• Tangential components of        and        are continuous:

• For surfaces that are perfect conductors:

• Radiation condition:

– As 

E
r

H
r

21

21

Hxn̂Hxn̂

Exn̂Exn̂
rr

rr

=

=

0Exn̂ =
r

r
1)r(Er ∝∞→

rr

2222

1111

HE

HE
rr

rr

εμ

εμ n̂
Surface

BoundaryMedium 1

Medium 2



Radar Systems Course    33
Radar Cross Section  1/1/2010

IEEE New Hampshire Section
IEEE AES Society

Scattering Matrix

• For a linear polarization basis

• The incident field polarization is related to the scattered field 
polarization by this Scattering Matrix -

 

S

• For and a reciprocal medium and for monostatic radar cross 
section:

• For a circular polarization basis
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Radar Cross Section Calculation Methods

• Introduction
– A look at the few simple problems 

• RCS prediction
– Exact Techniques

 Finite Difference-

 

Time Domain Technique (FD-TD)
 Method of Moments (MOM)

– Approximate Techniques
 Geometrical Optics (GO) 
 Physical Optics (PO)
 Geometrical Theory of Diffraction (GTD) 
 Physical Theory of Diffraction (PTD)

• Comparison of different methodologies
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Methods of Radar Cross Section 
Calculation

 
 

RCS Method 
 

Approach to Determine 
Surface Currents 

Finite Difference- 
Time Domain (FD-TD) 

Solve Differential Form of Maxwell’s 
Equation’s for Exact Fields 

Method of Moments 
(MoM) 

Solve Integral Form of Maxwell’s 
Equation’s for Exact Currents 

Geometrical Optics 
(GO) 

Current Contribution Assumed to Vanish 
Except at Isolated Specular Points 

Physical Optics 
 (PO) 

Currents Approximated by Tangent 
Plane Method 

Geometrical Theory of 
Diffraction (GTD) 

Geometrical Optics with Added Edge  
Current Contribution 

Physical Theory of 
Diffraction (PTD) 

Physical Optics with Added Edge  
Current Contribution 
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Finite Difference-
 

Time Domain (FD-TD) 
Overview

• Exact method for calculation radar cross section

• Solve differential form of Maxwell’s equations
– The change in the E field, in time, is dependent on the change in the H 

field, across space, and visa versa 

• The differential equations are transformed to difference equations
– These difference equations are used to sequentially calculate the E 

field at one time and the use those E field calculations to calculate H 
field at an incrementally greater time; etc. etc.

 Called “Marching in Time”

• These time stepped E and H field calculations avoid the necessity 
of  solving simultaneous equations

• Good approach for structures with varying electric and magnetic 
properties and for cavities
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Maxwell’s Equations in
 Rectangular Coordinates

• Examine 2 D problem –

 

no    dependence: 

• Equations decouple into H-field polarization and E-field 
polarization
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Maxwell’s Equations in
 Rectangular Coordinates

• Examine 2 D problem –

 

no    dependence: 

• Equations decouple into H-field polarization and E-field 
polarization
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• H-field polarization:

• Discrete form:

• Electric and magnetic fields are calculated alternately by the 
marching in time method

Discrete Form of Maxwell’s Equations
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FD-TD Calculations and Absorbing 
Boundary Conditions (ABC) 

• Absorbing Boundary Condition (ABC) Used to Limit Computational Domain
– Reflections at exterior boundary are minimized
– Traditional ABC’s model field as outgoing wave to estimate field quantities outside 

domain
– More recent perfectly matched layer (PML) model uses non-physical layer, that 

absorbs waves
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RCS Calculations Using the FD-TD Method

• Single frequency RCS calculations
– Excite with sinusoidal incident wave
– Run computation until steady state is reached
– Calculate amplitude and phase of scattered wave

• Multiple frequency RCS calculations
– Excite with Gaussian pulse incident wave
– Calculate transient response
– Take Fourier transform of incident pulse and transient 

response
– Calculate ratios of these transforms to obtain RCS at multiple 

frequencies

From Atkins, Reference 5
Courtesy of MIT Lincoln Laboratory
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Description of Scattering Cases on Video

Finite Difference Time Domain (FDTD) Simulations

Ei Hi

Hi

Ei

15 deg 15 deg
Hi

Ei

Case 1 –

 

Plate I Case 2 –

 

Plate II Case 3 –

 

Plate III

Case 4 –

 

Cylinder I Case 5 –

 

Cylinder II Case 6 –

 

Cavity

Hi

Ei
HiEiEi Hi

Courtesy of MIT Lincoln Laboratory Used with Permission
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FD-TD Simulation of Scattering by Strip

0.5 m

Ey

4 m

• Gaussian pulse plane wave incidence
• E-field polarization (Ey

 

plotted)
• Phenomena: specular reflection

Case 1

Courtesy of
MIT Lincoln Laboratory
Used with Permission



Radar Systems Course    44
Radar Cross Section  1/1/2010

IEEE New Hampshire Section
IEEE AES Society

Case 1

Courtesy of
MIT Lincoln Laboratory
Used with Permission
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FD-TD Simulation of Scattering by Strip

Case 1

Courtesy of
MIT Lincoln Laboratory
Used with Permission
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FD-TD Simulation of Scattering by Cylinder

0.5 m
Hy

2 m

• Gaussian pulse plane wave incidence
• H-field polarization (Hy
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