

Radar Systems Engineering Lecture 7 – Part 1 Radar Cross Section

Dr. Robert M. O'Donnell IEEE New Hampshire Section Guest Lecturer

IEEE New Hampshire Section

IEEE AES Society

Observed Definition - Radar Cross Section (RCS or σ)

Radar Cross Section (RCS) is the hypothetical area, that would intercept the incident power at the target, which if scattered isotropically, would produce the same echo power at the radar, as the actual target.

Factors Determining RCS

Threat's View of the Radar Range Equation

Radar cross section (RCS) of typical targets

- Variation with frequency, type of target, etc.
- Physical scattering mechanisms and contributors to the RCS of a target
- Prediction of a target's radar cross section
 - Measurement
 - Theoretical Calculation

	Square meters
Conventional winged missile	0.1
Small, single engine aircraft, or jet fighte	r 1
Four passenger jet	2
Large fighter	6
Medium jet airliner	40
Jumbo jet	100
Helicopter	3
Small open boat	0.02
Small pleasure boat (20-30 ft)	2
Cabin cruiser (40-50 ft)	10
Ship (5,000 tons displacement, L Band)	10,000
Automobile / Small truck	100 - 200
Bicycle	2
Man	1
Birds (large -> medium)	10 ⁻² - 10 ⁻³
Insects (locust -> fly)	10 ⁻⁴ - 10 ⁻⁵

Adapted from Skolnik, Reference 2

Radar Cross Sections of Targets Span at least 50 dB

- Radar cross section (RCS) of typical targets
 - Variation with frequency, type of target, etc.
- Physical scattering mechanisms and contributors to the RCS of a target
 - Prediction of a target's radar cross section
 - Measurement
 - Theoretical Calculation

- Types of RCS Contributors
 - Structural (Body shape, Control surfaces, etc.)
 - Avionics (Altimeter, Seeker, GPS, etc.)
 - Propulsion (Engine inlets and exhausts, etc.)

Single and Multiple Frequency RCS Calculations with the FD-FD Technique

- RCS Calculations for a Single Frequency
 - Illuminate target with incident sinusoidal wave
 - Sequentially in time, update the electric and magnetic fields, until steady state conditions are met
 - The scattered wave's amplitude and phase can the be calculated
- RCS Calculations for a Multiple Frequencies
 - Illuminate target with incident Gaussian pulse
 - Calculate the transient response
 - Calculate to Fourier transforms of both:
 - Incident Gaussian pulse, and
 - Transient response
 - RCS at multiple frequencies is calculated from the ratios of these two quantities

Scattering Mechanisms for an Arbitrary Target

- Radar cross section (RCS) of typical targets
 - Variation with frequency, type of target, etc.
- Physical scattering mechanisms and contributors to the RCS of a target
- Prediction of a target's radar cross section
- 📥 Measurement
 - Theoretical Calculation

Full Scale Measurements

Courtesy of MIT Lincoln Laboratory Used with Permission

Target on Support

- Foam column mounting
 - Dielectric properties of Styrofoam close to those of free space
- Metal pylon mounting
 - Metal pylon shaped to reduce radar reflections
 - Background subtraction can be used

Derived from: http://www.af.mil/shared/media/photodb/photos/050805-F-0000S-003.jpg

Full Scale Measurement of Johnson Generic Aircraft Model (JGAM)

tail

180

RATSCAT Outdoor Measurement Courtesy of MIT Lincoln Laboratory **Facility at Holloman AFB** Used with Permission tail broadside broadside nose 30 VV Polarization **Ratscat Measurement** ELEV = 7Fuselage Specular 20 9.67 GHz Cone Specular RCS (dBsm) 10 End Cap Wing Leading Edge 0 Wing Trailing Edge -10 -20 -30-40

> **IEEE New Hampshire Section IEEE AES Society**

120

150

90

-180

-150

-120

-90

-60

-30

30

0 Target Aspect Angle (deg)

60

IEEE AES Society

Radar Reflectivity Laboratory (Pt. Mugu) / AFRL Compact Range (WPAFB)

Radar Systems Course 20 Radar Cross Section 1/1/2010

Radar Systems Course 21 Radar Cross Section 1/1/2010

- Radar cross section (RCS) of typical targets
 - Variation with frequency, type of target, etc.
- Physical scattering mechanisms and contributors to the RCS of a target
- Prediction of a target's radar cross section
 - Measurement

Theoretical Calculation

Introduction

- A look at the few simple problems
- RCS prediction
 - Exact Techniques
 - Finite Difference- Time Domain Technique (FD-TD) Method of Moments (MOM)
 - Approximate Techniques

 Geometrical Optics (GO)
 Physical Optics (PO)
 Geometrical Theory of Diffraction (GTD)
 Physical Theory of Diffraction (PTD)
- Comparison of different methodologies

IEEE AES Society

Radar Systems Course 25 Radar Cross Section 1/1/2010

\rightarrow •	Three regions of wavelength		
	Rayleigh	(λ >> a	
	Mie / Resonance	(λ ~ a)	
	Optical	(λ << a	

- Other simple shapes
 - Examples: Cylinders, Flat Plates, Rods, Cones, Ogives
 - <u>Some</u> amenable to relatively straightforward solutions in <u>some</u> wavelength regions
- Complex targets:
 - Examples: Aircraft, Missiles, Ships)
 - RCS changes significantly with very small changes in frequency and / or viewing angle See Ref. 6 (Levanon), problem 2-1 or Ref. 2 (Skolnik) page 57
- We will spend the rest of the lecture studying the different basic methods of calculating radar cross sections

(Simple Scattering Features)

<u>Scattering</u>	<u>Feature</u>	Orientation	Approximate RCS
Corner Refle	ector	Axis of symmetry along LOS	$4\pi A_{eff}^2$ / λ^2
Flat Plate		Surface perpendicular to LOS	$4\pi A^2 / \lambda^2$
Singly Curve	ed Surface	Surface perpendicular to LOS	$4\pi A^2 / \lambda^2$
Doubly Curv	ved Surface	Surface perpendicular to LOS	$\pi a_1 a_2$
Straight Edg	je	Edge perpendicular to LOS	λ^2 / π
Curved Edg	e	Edge element perpendicular to L	$\cos a\lambda/2$
Cone Tip		Axial incidence	$\lambda^2 \sin^4(\alpha/2)$
Where:	LOS = line of sight A_{eff} = effective area A = actual area of p a = mean radius of c a_1 and a_2 = principa L = edge length a = radius of edge c α = half angle of the	contributing to multiple internal reflections late curvature; L = length of slanted surface l radii of surface curvature in orthogonal plane contour	s Adapted from Knott is Skolnik Reference 3

Radar Systems Course 27 Radar Cross Section 1/1/2010

• Three regions of wavelength

Rayleigh	(λ >> a)
Mie / Resonance	(λ ~ a)
Optical	(λ << a)

- Other simple shapes
 - Examples: Cylinders, Flat Plates, Rods, Cones, Ogives
 - <u>Some</u> amenable to relatively straightforward solutions in <u>some</u> wavelength regions
- ➡ Complex targets:
 - Examples: Aircraft, Missiles, Ships)
 - RCS changes significantly with very small changes in frequency and / or viewing angle See Ref. 6 (Levanon), problem 2-1 or Ref. 2 (Skolnik) page 57
 - We will spend the rest of the lecture studying the different basic methods of calculating radar cross sections

- Electromagnetism Problem
 - A plane wave with electric field, \$\vec{E}_{I}\$, impinges on the target of interest and some of the energy scatters back to the radar antenna
 - Since, the radar cross section is given by: $\sigma = \lim_{r \to \infty} 4\pi r^2 \frac{|\mathbf{r} \cdot \mathbf{s}|}{|\mathbf{\vec{F}}|^2}$
 - All we need to do is use Maxwell's Equations to calculate the scattered electric field $\bar{\bf E}_s$
 - That's easier said that done
 - Before we examine in detail these different techniques, let's review briefly the necessary electromagnetism concepts and formulae, in the next few viewgraphs

• Source free region of space:

$$\vec{\nabla} \times \vec{\mathbf{E}}(\vec{\mathbf{r}}, t) = -\frac{\partial \vec{\mathbf{B}}(\vec{\mathbf{r}}, t)}{\partial t}$$
$$\vec{\nabla} \times \vec{\mathbf{H}}(\vec{\mathbf{r}}, t) = \frac{\partial \vec{\mathbf{D}}(\vec{\mathbf{r}}, t)}{\partial t}$$
$$\nabla \cdot \vec{\mathbf{D}}(\vec{\mathbf{r}}, t) = \mathbf{0}$$
$$\nabla \cdot \vec{\mathbf{B}}(\vec{\mathbf{r}}, t) = \mathbf{0}$$

• Free space constitutive relations:

$$\vec{D}(\vec{r},t) = \varepsilon_0 \vec{E}(\vec{r},t)$$
 $\varepsilon_0 = \text{Free space permittivity}$
 $\vec{B}(\vec{r},t) = \mu_0 \vec{H}(\vec{r},t)$ $\mu_0 = \text{Free space permeability}$

Maxwell's Equations in Time-Harmonic Form

• Source free region:

$$\vec{\nabla} \times \vec{\mathbf{E}}(\vec{\mathbf{r}}) = \mathbf{i}\,\omega\,\vec{\mathbf{B}}(\vec{\mathbf{r}})$$
$$\vec{\nabla} \times \vec{\mathbf{H}}(\vec{\mathbf{r}}) = -\mathbf{i}\,\omega\,\vec{\mathbf{D}}(\vec{\mathbf{r}})$$
$$\nabla \cdot \vec{\mathbf{D}}(\vec{\mathbf{r}}) = \mathbf{0}$$
$$\nabla \cdot \vec{\mathbf{B}}(\vec{\mathbf{r}}) = \mathbf{0}$$

• Time dependence

$$\vec{\mathbf{E}}(\vec{\mathbf{r}},t) = \mathbf{R}\mathbf{e}\left\{\vec{\mathbf{E}}(\vec{\mathbf{r}})\mathbf{e}^{-i\omega t}\right\}$$
$$\vec{\mathbf{H}}(\vec{\mathbf{r}},t) = \mathbf{R}\mathbf{e}\left\{\vec{\mathbf{H}}(\vec{\mathbf{r}})\mathbf{e}^{-i\omega t}\right\}$$

- Tangential components of \vec{E} and \vec{H} are continuous: $\hat{n} \times \vec{E}_1 = \hat{n} \times \vec{E}_2$ $\hat{n} \times \vec{H}_1 = \hat{n} \times \vec{H}_2$
- For surfaces that are perfect conductors:

$$\hat{\mathbf{n}} \mathbf{x} \mathbf{\vec{E}} = \mathbf{0}$$

• Radiation condition:

- As
$$r \rightarrow \infty$$
 $\vec{E}(\vec{r}) \propto \frac{1}{r}$

- For a linear polarization basis $\vec{E}_{S} = \begin{bmatrix} \frac{E_{VS}}{E_{HS}} \end{bmatrix} = \frac{e^{ikr}}{r} \begin{bmatrix} S_{VV} & S_{VH} \\ S_{HV} & S_{HH} \end{bmatrix} \begin{bmatrix} \frac{E_{VI}}{E_{HI}} \end{bmatrix}$
- The incident field polarization is related to the scattered field polarization by this Scattering Matrix S

$$\sigma_{VV} = 4 \pi \left| \mathbf{S}_{VV} \right|^{2}$$
$$\sigma_{HH} = 4 \pi \left| \mathbf{S}_{HH} \right|^{2}$$
$$\sigma_{VH} = 4 \pi \left| \mathbf{S}_{VH} \right|^{2}$$

• For and a reciprocal medium and for monostatic radar cross section:

 $\sigma_{\text{RR}},\,\sigma_{\text{LL}},\sigma_{\text{RL}}$

• For a circular polarization basis

$$\sigma_{\rm VH} = \sigma_{\rm HV}$$

- Introduction
 - A look at the few simple problems

RCS prediction

Exact Techniques

Finite Difference- Time Domain Technique (FD-TD) Method of Moments (MOM)

- Approximate Techniques

 Geometrical Optics (GO)
 Physical Optics (PO)
 Geometrical Theory of Diffraction (GTD)
 Physical Theory of Diffraction (PTD)
- Comparison of different methodologies

Methods of Radar Cross Section Calculation

RCS Method	Approach to Determine Surface Currents
Finite Difference-	Solve Differential Form of Maxwell's
Time Domain (FD-TD)	Equation's for Exact Fields
Method of Moments	Solve Integral Form of Maxwell's
(MoM)	Equation's for Exact Currents
Geometrical Optics	Current Contribution Assumed to Vanish
(GO)	Except at Isolated Specular Points
Physical Optics	Currents Approximated by Tangent
(PO)	Plane Method
Geometrical Theory of	Geometrical Optics with Added Edge
Diffraction (GTD)	Current Contribution
Physical Theory of	Physical Optics with Added Edge
Diffraction (PTD)	Current Contribution

Finite Difference- Time Domain (FD-TD) Overview

- Exact method for calculation radar cross section
- Solve differential form of Maxwell's equations
 - The change in the E field, in time, is dependent on the change in the H field, across space, and visa versa
- The differential equations are transformed to difference equations
 - These difference equations are used to sequentially calculate the E field at one time and the use those E field calculations to calculate H field at an incrementally greater time; etc. etc.

Called "Marching in Time"

- These time stepped E and H field calculations avoid the necessity of solving simultaneous equations
- Good approach for structures with varying electric and magnetic properties and for cavities

Maxwell's Equations in Rectangular Coordinates

IEEE AES Society

- Examine 2 D problem no y dependence: $\frac{\partial}{\partial \mathbf{v}} = \mathbf{0}$
- Equations decouple into H-field polarization and E-field polarization

Maxwell's Equations in Rectangular Coordinates

• Examine 2 D problem – no y dependence:
$$\frac{\partial}{\partial y} = 0$$

• Equations decouple into H-field polarization and E-field polarization

Discrete Form of Maxwell's Equations

$$\begin{aligned} &-\frac{\mu_{o}}{\Delta_{T}} \left[\mathbf{H}_{Y} \left(\mathbf{x}_{o} + \frac{\Delta_{X}}{2}, \mathbf{z}_{o} + \frac{\Delta_{Z}}{2}, \mathbf{t}_{o} + \frac{\Delta_{T}}{2} \right) - \mathbf{H}_{Y} \left(\mathbf{x}_{o} + \frac{\Delta_{X}}{2}, \mathbf{z}_{o} + \frac{\Delta_{Z}}{2}, \mathbf{t}_{o} - \frac{\Delta_{T}}{2} \right) \right] \\ &= \frac{1}{\Delta_{Z}} \left[\mathbf{E}_{X} \left(\mathbf{x}_{o} + \frac{\Delta_{X}}{2}, \mathbf{z}_{o} + \Delta_{Z}, \mathbf{t}_{o} \right) - \mathbf{E}_{X} \left(\mathbf{x}_{o} + \frac{\Delta_{X}}{2}, \mathbf{z}_{o}, \mathbf{t}_{o} \right) \right] \\ &- \frac{1}{\Delta_{X}} \left[\mathbf{E}_{Z} \left(\mathbf{x}_{o} + \Delta_{X}, \mathbf{z}_{o} + \frac{\Delta_{Z}}{2}, \mathbf{t}_{o} \right) - \mathbf{E}_{Z} \left(\mathbf{x}_{o}, \mathbf{z}_{o} + \frac{\Delta_{Z}}{2}, \mathbf{t}_{o} \right) \right] \end{aligned}$$

• Electric and magnetic fields are calculated alternately by the marching in time method

FD-TD Calculations and Absorbing Boundary Conditions (ABC)

- Absorbing Boundary Condition (ABC) Used to Limit Computational Domain
 - Reflections at exterior boundary are minimized
 - Traditional ABC's model field as outgoing wave to estimate field quantities outside domain
 - More recent perfectly matched layer (PML) model uses non-physical layer, that absorbs waves

- Single frequency RCS calculations
 - Excite with sinusoidal incident wave
 - Run computation until steady state is reached
 - Calculate amplitude and phase of scattered wave
- Multiple frequency RCS calculations
 - Excite with Gaussian pulse incident wave
 - Calculate transient response
 - Take Fourier transform of incident pulse and transient response
 - Calculate ratios of these transforms to obtain RCS at multiple frequencies

From Atkins, Reference 5 Courtesy of MIT Lincoln Laboratory

Radar Systems Course 42 Radar Cross Section 1/1/2010

Courtesy of MIT Lincoln Laboratory Used with Permission

FD-TD Simulation of Scattering by Strip

- Gaussian pulse plane wave incidence
- H-field polarization (H_v plotted)
- Phenomena: creeping wave

Case 5

Courtesy of MIT Lincoln Laboratory Used with Permission

FD-TD Simulation of Scattering by Cylinder

Case 5

Courtesy of MIT Lincoln Laboratory Used with Permission

> IEEE New Hampshire Section IEEE AES Society

Radar Systems Course 48 Radar Cross Section 1/1/2010

