Radar Systems Engineering Lecture 7 - Part 1 Radar Cross Section

Dr. Robert M. O'Donnell
IEEE New Hampshire Section
Guest Lecturer

Block Diagram of Radar System

This lecture

User Displays and Radar Control

Definition - Radar Cross Section (RCS or σ)

Figure by MIT OCW.

$$
\operatorname{RCS}=\underset{\mathbf{r} \longrightarrow \infty}{\operatorname{LIM}} 4 \pi \mathbf{r}^{2} \frac{\left|\mathrm{E}_{\mathbf{s}}\right|^{2}}{\left|\mathrm{E}_{\mathbf{i}}\right|^{2}} \quad \text { (Unit: Area) }
$$

Radar Cross Section (RCS) is the hypothetical area, that would intercept the incident power at the target, which if scattered isotropically, would produce the same echo power at the radar, as the actual target.

Factors Determining RCS

Threat's View of the Radar Range Equation

Antenna Gain G

Transmit Power P_{T}

Figure by MIT OCW.

Transmitted Pulse

Radar Range Equation

Cannot Control

Outline

- Radar cross section (RCS) of typical targets
- Variation with frequency, type of target, etc.
- Physical scattering mechanisms and contributors to the RCS of a target
- Prediction of a target's radar cross section
- Measurement
- Theoretical Calculation

Radar Cross Section of Artillery Shell

RCS vs. Aspect Angle of an Artillery Shell

IEEE New Hampshire Section

Radar Cross Section of Cessna 150L

IEEE New Hampshire Section IEEE AES Society

Aspect Angle Dependence of RCS

Cone Sphere Re-entry Vehicle (RV) Example
$+20 \mathrm{dBm}^{2}$
Reflectivity pattern $\ddagger 0 \mathrm{dBm}{ }^{2}$

Figure by MIT OCW.

Radar A sees $0.001 \mathrm{~m}^{2} \quad$ Radar B sees $0.75 \mathrm{~m}^{2}$

Examples of Radar Cross Sections

Square meters
Conventional winged missile 0.1
Small, single engine aircraft, or jet fighter 1
Four passenger jet 2
Large fighter 6
Medium jet airliner 40
Jumbo jet 100
Helicopter 3
Small open boat 0.02
Small pleasure boat (20-30 ft) 2
Cabin cruiser (40-50 ft) 10
Ship (5,000 tons displacement, L Band) 10,000
Automobile / Small truck 100-200
Bicycle 2
Man 1
Birds (large -> medium) $10^{-2}-10^{-3}$
Insects (locust -> fly)$10^{-4}-10^{-5}$

Outline

- Radar cross section (RCS) of typical targets
- Variation with frequency, type of target, etc.
- Physical scattering mechanisms and contributors to the RCS of a target
- Prediction of a target's radar cross section
- Measurement
- Theoretical Calculation

RCS Target Contributors

- Types of RCS Contributors
- Structural (Body shape, Control surfaces, etc.)
- Avionics (Altimeter, Seeker, GPS, etc.)
- Propulsion (Engine inlets and exhausts, etc.)

Single and Multiple Frequency RCS Calculations with the FD-FD Technique

- RCS Calculations for a Single Frequency
- Illuminate target with incident sinusoidal wave
- Sequentially in time, update the electric and magnetic fields, until steady state conditions are met
- The scattered wave's amplitude and phase can the be calculated
- RCS Calculations for a Multiple Frequencies
- Illuminate target with incident Gaussian pulse
- Calculate the transient response
- Calculate to Fourier transforms of both:

Incident Gaussian pulse, and
Transient response

- RCS at multiple frequencies is calculated from the ratios of these two quantities

Scattering Mechanisms for an Arbitrary Target

Measured RCS of C-29 Aircraft Model

Full Scale C-29
BAE Hawker 125-800

Outline

- Radar cross section (RCS) of typical targets
- Variation with frequency, type of target, etc.
- Physical scattering mechanisms and contributors to the RCS of a target
- Prediction of a target's radar cross section
\longrightarrow - Measurement
- Theoretical Calculation

Techniques for RCS Analysis

Full Scale Measurements

Theoretical Prediction

Scaled Model Measurements

Full Scale Measurements

Target on Support

- Foam column mounting
- Dielectric properties of Styrofoam close to those of free space
- Metal pylon mounting
- Metal pylon shaped to reduce radar reflections
- Background subtraction can be used

Derived from: http://www.af.mil/shared/media/photodb/photos/050805-F-0000S-003.jpg

Full Scale Measurement of Johnson Generic Aircraft Model (JGAM)

Compact Range RCS Measurement

Radar Reflectivity Laboratory (Pt. Mugu) / AFRL Compact Range (WPAFB)

Scale Model Measurement

Scaling of RCS of Targets

Scale Factor
S

Quantity	Full Scale	Subscale
Length	L	$\mathrm{L}^{\prime}=\mathrm{L} / \mathrm{S}$
Wavelength	λ	$\lambda^{\prime}=\lambda / \mathrm{S}$
Frequency	\mathbf{f}	$\mathrm{f}^{\prime}=\mathrm{S} \mathbf{f}$
Time	\mathbf{t}	$\mathbf{t}^{\prime}=\mathrm{t} / \mathrm{S}$
Permittivity	ε	$\varepsilon^{\prime}=\varepsilon$
Permeability	μ	$\mu^{\prime}=\mu$
Conductivity	\mathbf{g}	$\mathrm{g}^{\prime}=\mathrm{S} \mathbf{g}$
Radar Cross Section	σ	$\sigma^{\prime}=\sigma / \mathbf{S}^{2}$

Outline

- Radar cross section (RCS) of typical targets
- Variation with frequency, type of target, etc.
- Physical scattering mechanisms and contributors to the RCS of a target
- Prediction of a target's radar cross section
- Measurement
\longmapsto - Theoretical Calculation

Radar Cross Section Calculation Methods

- Introduction
- A look at the few simple problems
- RCS prediction
- Exact Techniques

Finite Difference- Time Domain Technique (FD-TD)
Method of Moments (MOM)

- Approximate Techniques

Geometrical Optics (GO)
Physical Optics (PO)
Geometrical Theory of Diffraction (GTD)
Physical Theory of Diffraction (PTD)

- Comparison of different methodologies

Radar Cross Section of Sphere


```
Rayleigh Region \(\lambda \gg \mathrm{a}\) \(\sigma=k / \lambda^{4}\)
```

Mie or Resonance Region Oscillations Backscattered wave interferes with creeping wave

Optical Regio $\begin{array}{ll} \lambda<a^{2} \\ \sigma=\pi \mathbf{a}^{2} \end{array}$ Surface and edg scattering occur

Figure ву міт осш. Circumference/ wavelength $=2 \pi \mathrm{a} / \lambda$

Radar Cross Section Calculation Issues

- Three regions of wavelength

Rayleigh	$(\lambda \gg a)$
Mie / Resonance	$(\lambda \sim a)$
Optical	$(\lambda \ll a)$

- Other simple shapes
- Examples: Cylinders, Flat Plates, Rods, Cones, Ogives
- Some amenable to relatively straightforward solutions in some wavelength regions
- Complex targets:
- Examples: Aircraft, Missiles, Ships)
- RCS changes significantly with very small changes in frequency and / or viewing angle

See Ref. 6 (Levanon), problem 2-1 or Ref. 2 (Skolnik) page 57

- We will spend the rest of the lecture studying the different basic methods of calculating radar cross sections

High Frequency RCS Approximations

(Simple Scattering Features)

Scattering Feature

Corner Reflector
Flat Plate
Singly Curved Surface
Doubly Curved Surface
Straight Edge
Curved Edge
Cone Tip

Orientation

Axis of symmetry along LOS
Surface perpendicular to LOS
Surface perpendicular to LOS
Surface perpendicular to LOS
Edge perpendicular to LOS
Edge element perpendicular to LOS
Axial incidence

Approximate RCS
$4 \pi A_{\text {eff }}^{2} / \lambda^{2}$
$4 \pi A^{2} / \lambda^{2}$
$4 \pi A^{2} / \lambda^{2}$
$\pi \mathbf{a}_{1} \mathbf{a}_{2}$
λ^{2} / π
a $\lambda / 2$
$\lambda^{2} \sin ^{4}(\alpha / 2)$

Where: LOS = line of sight
$\mathrm{A}_{\text {eff }}=$ effective area contributing to multiple internal reflections
A = actual area of plate
$a=$ mean radius of curvature; $L=$ length of slanted surface
a_{1} and $a_{2}=$ principal radii of surface curvature in orthogonal planes
L = edge length
$\mathrm{a}=$ radius of edge contour
$\alpha=$ half angle of the cone

Radar Cross Section Calculation Issues

- Three regions of wavelength

Rayleigh	$(\lambda \gg a)$
Mie / Resonance	$(\lambda \sim a)$
Optical	$(\lambda \ll a)$

- Other simple shapes
- Examples: Cylinders, Flat Plates, Rods, Cones, Ogives
- Some amenable to relatively straightforward solutions in some wavelength regions
- Complex targets:
- Examples: Aircraft, Missiles, Ships)
- RCS changes significantly with very small changes in frequency and / or viewing angle

See Ref. 6 (Levanon), problem 2-1 or Ref. 2 (Skolnik) page 57

- We will spend the rest of the lecture studying the different basic methods of calculating radar cross sections

RCS Calculation - Overview

- Electromagnetism Problem
- A plane wave with electric field, \vec{E}_{I}, impinges on the target of interest and some of the energy scatters back to the radar antenna
- Since, the radar cross section is given by: $\sigma=\lim _{r \rightarrow \infty} 4 \pi r^{2} \frac{\left|\overrightarrow{\mathbf{E}}_{\mathrm{S}}\right|^{2}}{\left|\overrightarrow{\mathbf{E}}_{\mathrm{I}}\right|^{2}}$
- All we need to do is use Maxwell's Equations to calculate the scattered electric field $\mathbf{E}_{\text {s }}$
- That's easier said that done
- Before we examine in detail these different techniques, let's review briefly the necessary electromagnetism concepts and formulae, in the next few viewgraphs

Maxwell's Equations

- Source free region of space:

$$
\begin{aligned}
& \vec{\nabla} \times \overrightarrow{\mathbf{E}}(\overrightarrow{\mathbf{r}}, \mathbf{t})=-\frac{\partial \overrightarrow{\mathbf{B}}(\overrightarrow{\mathbf{r}}, \mathbf{t})}{\partial \mathbf{t}} \\
& \vec{\nabla} \times \overrightarrow{\mathbf{H}}(\overrightarrow{\mathbf{r}}, \mathbf{t})=\frac{\partial \overrightarrow{\mathbf{D}}(\overrightarrow{\mathbf{r}}, \mathbf{t})}{\partial \mathbf{t}} \\
& \nabla \cdot \overrightarrow{\mathbf{D}}(\overrightarrow{\mathbf{r}}, \mathbf{t})=\mathbf{0} \\
& \nabla \cdot \overrightarrow{\mathbf{B}}(\overrightarrow{\mathbf{r}}, \mathbf{t})=\mathbf{0}
\end{aligned}
$$

- Free space constitutive relations:

$$
\begin{array}{ll}
\overrightarrow{\mathbf{D}}(\overrightarrow{\mathbf{r}}, \mathbf{t})=\varepsilon_{0} \overrightarrow{\mathbf{E}}(\overrightarrow{\mathbf{r}}, \mathbf{t}) & \varepsilon_{0}=\text { Free space permittivity } \\
\overrightarrow{\mathbf{B}}(\overrightarrow{\mathbf{r}}, \mathbf{t})=\mu_{0} \overrightarrow{\mathbf{H}}(\overrightarrow{\mathbf{r}}, \mathbf{t}) & \mu_{0}=\text { Free space permeability }
\end{array}
$$

Maxwell's Equations in Time-Harmonic Form

- Source free region:

$$
\begin{aligned}
& \vec{\nabla} \times \overrightarrow{\mathbf{E}}(\overrightarrow{\mathbf{r}})=\mathbf{i} \omega \overrightarrow{\mathbf{B}}(\overrightarrow{\mathbf{r}}) \\
& \vec{\nabla} \times \overrightarrow{\mathbf{H}}(\overrightarrow{\mathbf{r}})=-\mathbf{i} \omega \overrightarrow{\mathbf{D}}(\overrightarrow{\mathbf{r}}) \\
& \nabla \cdot \overrightarrow{\mathbf{D}}(\overrightarrow{\mathbf{r}})=\mathbf{0} \\
& \nabla \cdot \overrightarrow{\mathbf{B}}(\overrightarrow{\mathbf{r}})=\mathbf{0}
\end{aligned}
$$

- Time dependence

$$
\begin{aligned}
& \overrightarrow{\mathbf{E}}(\overrightarrow{\mathbf{r}}, \mathbf{t})=\operatorname{Re}\left\{\overrightarrow{\mathbf{E}}(\overrightarrow{\mathbf{r}}) \mathbf{e}^{-\mathrm{i} \omega t}\right\} \\
& \overrightarrow{\mathbf{H}}(\overrightarrow{\mathbf{r}}, \mathbf{t})=\operatorname{Re}\left\{\overrightarrow{\mathbf{H}}(\overrightarrow{\mathbf{r}}) \mathbf{e}^{-\mathrm{i} \omega t}\right\}
\end{aligned}
$$

Boundary Conditions

| Medium 1 | μ_{1} | ε_{1} | $\hat{\mathbf{n}}$ | $\overrightarrow{\mathbf{E}}_{1}$ | $\overrightarrow{\mathbf{H}}_{1}$ | \quadSurface
 Boundary |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Medium 2 | μ_{2} | ε_{2} | | $\overrightarrow{\mathbf{E}}_{2}$ | $\overrightarrow{\mathbf{H}}_{2}$ | |

- Tangential components of $\overrightarrow{\mathbf{E}}$ and $\overrightarrow{\mathbf{H}}$ are continuous:

$$
\begin{aligned}
& \hat{\mathbf{n}} \times \overrightarrow{\mathbf{E}}_{1}=\hat{\mathbf{n}} \times \overrightarrow{\mathbf{E}}_{2} \\
& \hat{\mathbf{n}} \times \overrightarrow{\mathbf{H}}_{1}=\hat{\mathbf{n}} \times \overrightarrow{\mathbf{H}}_{2}
\end{aligned}
$$

- For surfaces that are perfect conductors:

$$
\hat{\mathbf{n}} \times \overrightarrow{\mathbf{E}}=\mathbf{0}
$$

- Radiation condition:

$$
\text { - As } \mathbf{r} \rightarrow \infty \quad \overrightarrow{\mathbf{E}}(\overrightarrow{\mathbf{r}}) \propto \frac{1}{\mathbf{r}}
$$

Scattering Matrix

- For a linear polarization basis

$$
\overrightarrow{\mathbf{E}}_{\mathrm{S}}=\left[\frac{\mathbf{E}_{\mathrm{VS}}}{\mathbf{E}_{\mathrm{HS}}}\right]=\frac{\mathbf{e}^{\mathrm{ikr}}}{\mathbf{r}}\left[\begin{array}{ll}
\mathbf{S}_{\mathrm{VV}} & \mathbf{S}_{\mathrm{VH}} \\
\mathbf{S}_{\mathrm{HV}} & \mathbf{S}_{\mathrm{HH}}
\end{array}\right]\left[\begin{array}{l}
\mathbf{E}_{\mathrm{VI}} \\
\mathbf{E}_{\mathrm{HI}}
\end{array}\right]
$$

- The incident field polarization is related to the scattered field polarization by this Scattering Matrix - S

$$
\begin{aligned}
& \sigma_{\mathrm{VV}}=4 \pi\left|\mathrm{~S}_{\mathrm{VV}}\right|^{2} \\
& \sigma_{\mathrm{HH}}=4 \pi\left|\mathrm{~S}_{\mathrm{HH}}\right|^{2} \\
& \sigma_{\mathrm{VH}}=4 \pi\left|\mathrm{~S}_{\mathrm{VH}}\right|^{2}
\end{aligned}
$$

- For and a reciprocal medium and for monostatic radar cross section:

$$
\sigma_{\mathrm{RR}}, \sigma_{\mathrm{LL}}, \sigma_{\mathrm{RL}}
$$

- For a circular polarization basis

$$
\sigma_{\mathrm{VH}}=\sigma_{\mathrm{HV}}
$$

Radar Cross Section Calculation Methods

- Introduction
- A look at the few simple problems
- RCS prediction
- Exact Techniques

Finite Difference- Time Domain Technique (FD-TD)
Method of Moments (MOM)

- Approximate Techniques

Geometrical Optics (GO)
Physical Optics (PO)
Geometrical Theory of Diffraction (GTD)
Physical Theory of Diffraction (PTD)

- Comparison of different methodologies

Methods of Radar Cross Section Calculation

RCS Method	Approach to Determine Surface Currents
Finite Difference-	Solve Differential Form of Maxwell's Equation's for Exact Fields
Method of Moments (MoM)	Solve Integral Form of Maxwell's Equation's for Exact Currents
Geometrical Optics (GO)	Current Contribution Assumed to Vanish Except at Isolated Specular Points
Physical Optics (PO)	Currents Approximated by Tangent Plane Method
Geometrical Theory of Diffraction (GTD)	Geometrical Optics with Added Edge Current Contribution
Physical Theory of Diffraction (PTD)	Physical Optics with Added Edge Current Contribution

- Exact method for calculation radar cross section
- Solve differential form of Maxwell's equations
- The change in the E field, in time, is dependent on the change in the H field, across space, and visa versa
- The differential equations are transformed to difference equations
- These difference equations are used to sequentially calculate the E field at one time and the use those E field calculations to calculate H field at an incrementally greater time; etc. etc.

Called "Marching in Time"

- These time stepped E and H field calculations avoid the necessity of solving simultaneous equations
- Good approach for structures with varying electric and magnetic properties and for cavities

Maxwell's Equations in Rectangular Coordinates

- Examine 2 D problem - no y dependence: $\frac{\partial}{\partial \mathrm{y}}=0$
- Equations decouple into H -field polarization and E-field polarization

$$
\begin{array}{ll}
\frac{\partial}{\partial y} H_{Z}-\frac{\partial}{\partial \mathbf{z}} \mathbf{H}_{Y}=\varepsilon_{0} \frac{\partial}{\partial t} \mathbf{E}_{\mathrm{X}} & \frac{\partial}{\partial \mathbf{y}} \mathbf{E}_{\mathrm{Z}}-\frac{\partial}{\partial \mathrm{z}} \mathbf{E}_{\mathrm{Y}}=-\mu_{0} \frac{\partial}{\partial \mathbf{t}} \mathbf{H}_{\mathrm{X}} \\
\frac{\partial}{\partial \mathrm{z}} \mathbf{E}_{\mathrm{X}}-\frac{\partial}{\partial \mathbf{x}} \mathbf{E}_{\mathrm{Z}}=-\mu_{0} \frac{\partial}{\partial \mathbf{t}} \mathbf{H}_{\mathrm{Y}} & \frac{\partial}{\partial \mathbf{z}} \mathbf{H}_{\mathrm{X}}-\frac{\partial}{\partial \mathbf{x}} \mathbf{H}_{\mathrm{Z}}=\varepsilon_{0} \frac{\partial}{\partial \mathbf{t}} \mathbf{E}_{\mathrm{Y}} \\
\frac{\partial}{\partial \mathbf{x}} \mathbf{H}_{\mathrm{Y}}-\frac{\partial}{\partial \mathbf{y}} \mathbf{H}_{\mathrm{X}}=\varepsilon_{0} \frac{\partial}{\partial \mathbf{t}} \mathbf{E}_{\mathrm{Z}} & \frac{\partial}{\partial \mathbf{x}} \mathbf{E}_{\mathrm{Y}}-\frac{\partial}{\partial \mathbf{y}} \mathbf{E}_{\mathrm{X}}=-\mu_{0} \frac{\partial}{\partial \mathbf{t}} \mathbf{H}_{\mathrm{Z}}
\end{array}
$$

- H -field polarization
- E-field polarization

$$
\begin{array}{lll}
\mathbf{H}_{\mathrm{Y}} & \mathbf{E}_{\mathrm{X}} & \mathbf{E}_{\mathrm{Z}}
\end{array}
$$

$$
\begin{array}{lll}
\mathbf{E}_{\mathbf{Y}} & \mathbf{H}_{\mathrm{X}} & \mathbf{H}_{\mathrm{Z}} \\
\hline
\end{array}
$$

Maxwell's Equations in Rectangular Coordinates

- Examine 2 D problem - no y dependence: $\frac{\partial}{\partial y}=0$
- Equations decouple into H-field polarization and E-field polarization

$$
\frac{\frac{\partial}{\partial \mathbf{F}_{\mathbf{y}} \mathbf{H}_{\mathrm{Z}}-\frac{\partial}{\partial \mathrm{z}} \mathbf{H}_{\mathrm{Y}}=\varepsilon_{0} \frac{\partial}{\partial \mathbf{t}} \mathbf{E}_{\mathrm{X}}}}{\frac{\partial}{\partial \mathrm{z}} \mathbf{E}_{\mathrm{X}}-\frac{\partial}{\partial \mathbf{x}} \mathbf{E}_{\mathrm{Z}}=-\mu_{0} \frac{\partial}{\partial \mathbf{t}} \mathbf{H}_{\mathrm{Y}}}
$$

$$
\begin{aligned}
& \frac{\partial}{\partial \mathbf{E}_{\mathrm{Z}}-\frac{\partial}{\partial z} \mathbf{E}_{\mathrm{Y}}=-\mu_{0} \frac{\partial}{\partial \mathbf{t}} \mathbf{H}_{\mathrm{X}}} \\
& \frac{\partial}{\partial \mathrm{z}} \mathbf{H}_{\mathrm{X}}-\frac{\partial}{\partial \mathbf{x}} \mathbf{H}_{\mathrm{Z}}=\varepsilon_{0} \frac{\partial}{\partial \mathbf{t}} \mathbf{E}_{\mathrm{Y}} \\
& \frac{\partial}{\partial \mathbf{x}} \mathbf{E}_{\mathrm{Y}}-\frac{\partial}{\partial \mathbf{y}} \mathbf{E}_{\mathrm{X}}=-\mu_{0} \frac{\partial}{\partial \mathbf{t}} \mathbf{H}_{\mathrm{Z}}
\end{aligned}
$$

- H-field polarization $\begin{array}{llll}H_{Y} & E_{X} & E_{Z}\end{array}$
- E-field polarization

$$
\begin{array}{llll}
\mathbf{E}_{\mathrm{Y}} & \mathbf{H}_{\mathrm{X}} & \mathbf{H}_{\mathrm{Z}}
\end{array}
$$

Discrete Form of Maxwell's Equations

- H-field polarization:

$$
\begin{aligned}
-\mu_{0} \frac{\partial}{\partial \mathbf{t}} \mathbf{H}_{\mathbf{Y}}(\mathbf{x}, \mathbf{y}, \mathbf{t})= & \frac{\partial}{\partial \mathbf{z}} \mathbf{E}_{\mathbf{x}}(\mathbf{x}, \mathbf{y}, \mathbf{t}) \\
& -\frac{\partial}{\partial \mathbf{x}} \mathbf{E}_{\mathbf{z}}(\mathbf{x}, \mathbf{y}, \mathbf{t})
\end{aligned}
$$

- Discrete form:

$$
\begin{aligned}
& -\frac{\mu_{0}}{\Delta_{\mathrm{T}}}\left[\mathbf{H}_{\mathrm{Y}}\left(\mathbf{x}_{\mathrm{o}}+\frac{\Delta_{\mathrm{X}}}{2}, \mathbf{z}_{0}+\frac{\Delta_{\mathrm{Z}}}{2}, \mathbf{t}_{\mathrm{o}}+\frac{\Delta_{\mathrm{T}}}{2}\right)-\mathbf{H}_{\mathrm{Y}}\left(\mathbf{x}_{\mathrm{o}}+\frac{\Delta_{\mathrm{X}}}{2}, \mathbf{z}_{0}+\frac{\Delta_{\mathrm{Z}}}{2}, \mathbf{t}_{\mathrm{o}}-\frac{\Delta_{\mathrm{T}}}{2}\right)\right] \\
& =\frac{1}{\Delta_{\mathrm{Z}}}\left[\mathrm{E}_{\mathrm{X}}\left(\mathbf{x}_{\mathrm{o}}+\frac{\Delta_{\mathrm{X}}}{2}, \mathrm{z}_{\mathrm{o}}+\Delta_{\mathrm{Z}}, \mathrm{t}_{\mathrm{o}}\right)-\mathrm{E}_{\mathrm{X}}\left(\mathbf{x}_{\mathrm{o}}+\frac{\Delta_{\mathrm{x}}}{2}, \mathrm{z}_{\mathrm{o}}, \mathrm{t}_{\mathrm{o}}\right)\right] \\
& -\frac{1}{\Delta_{\mathrm{X}}}\left[\mathrm{E}_{\mathrm{Z}}\left(\mathrm{x}_{\mathrm{o}}+\Delta_{\mathrm{X}}, \mathrm{z}_{\mathrm{o}}+\frac{\Delta_{\mathrm{Z}}}{2}, \mathrm{t}_{\mathrm{o}}\right)-\mathrm{E}_{\mathrm{Z}}\left(\mathrm{x}_{0}, \mathrm{z}_{\mathrm{o}}+\frac{\Delta_{\mathrm{Z}}}{2}, \mathrm{t}_{\mathrm{o}}\right)\right]
\end{aligned}
$$

- Electric and magnetic fields are calculated alternately by the marching in time method

FD-TD Calculations and Absorbing Boundary Conditions (ABC)

$1^{\text {st }}$ Order ABC $\left(\frac{1}{2}\left(\frac{\partial}{\partial z}+\frac{\partial}{\partial \mathbf{x}}\right)+\frac{1}{c} \frac{\partial}{\partial t}\right) H_{y}=0$
Absorbing Boundary

Layer Perfectly Matched
Perfect Conductor
$2^{\text {nd }}$ Order ABC

$$
\left(\frac{1}{c} \frac{\partial^{2}}{\partial \mathbf{x} \partial t}+\frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}}-\frac{1}{2} \frac{\partial^{2}}{\partial \mathbf{x}^{2}}\right) \mathbf{H}_{\mathrm{y}}=\mathbf{0}
$$

- Absorbing Boundary Condition (ABC) Used to Limit Computational Domain
- Reflections at exterior boundary are minimized
- Traditional ABC's model field as outgoing wave to estimate field quantities outside domain
- More recent perfectly matched layer (PML) model uses non-physical layer, that absorbs waves

RCS Calculations Using the FD-TD Method

- Single frequency RCS calculations
- Excite with sinusoidal incident wave
- Run computation until steady state is reached
- Calculate amplitude and phase of scattered wave
- Multiple frequency RCS calculations
- Excite with Gaussian pulse incident wave
- Calculate transient response
- Take Fourier transform of incident pulse and transient response
- Calculate ratios of these transforms to obtain RCS at multiple frequencies

Description of Scattering Cases on Video shs

Finite Difference Time Domain (FDTD) Simulations
Case 1 - Plate I

Case 4 - Cylinder I

Case 2 - Plate II
Case 3 - Plate III

$$
\text { Case } 6 \text { - Cavity }
$$

FD-TD Simulation of Scattering by Strip

- Gaussian pulse plane wave incidence

Case 1

- E-field polarization (E_{y} plotted)
- Phenomena: specular reflection

Case 1

FD-TD Simulation of Scattering by Strip

Case 1

FD-TD Simulation of Scattering by Cylindes

Case 5

- Gaussian pulse plane wave incidence
- H-field polarization (H_{y} plotted)
- Phenomena: creeping wave

FD-TD Simulation of Scattering by Cylinderivs

Case 5

Backscatter of Short Pulse from Sphere

Radius of sphere is equal to the radar wavelength

